Fungal respiratory infections in cystic fibrosis: diagnostic challenges in the clinical laboratory

Jean-Philippe Bouchara, Sandrine Giraud, Agnès Marot, Maxime Fleury and Marc Pihet

Host-Pathogen Interaction Study Group, EA 3142 Angers University, Angers, France

Anvers, Belgium, 26 October 2014
Fungal respiratory infections in CF

Morbidity and mortality in cystic fibrosis essentially due to chronic respiratory infections

Bacteria, especially *Pseudomonas aeruginosa*: the major cause of these infections

Over recent decades, considerable attention has been paid to:
- prevention and treatment of bacterial respiratory infections
- development of an early diagnosis of CF
- improvement in the nutritional status of the patients

Marked increase in life expectancy
Fungal respiratory infections in CF

Later in age, the respiratory tract of CF patients may also be colonized by various fungal species

Fungal colonization of the airways facilitated by repeated cures of antibiotics and use of corticosteroids

True respiratory infections the frequency of which regularly increased

However, relatively little progress with regards to fungal respiratory infections.
Yeasts and moulds in CF
Fungal biota in CF: a great diversity

- C. guilliermondii
- C. lusitaniae
- C. bracarensis, C. nivariensis
- C. metapsilosis, C. orthopsilosis
- S. cerevisiae

Pathogenicity still unknown

Chronicity

C. albicans
C. dubliniensis

C. glabrata
C. parapsilosis

T. mycotoxinivorans

Frequency

Pathogenicity established

DNA detection from sputum samples: *Malassezia* species

T. mycotoxinivorans: recently recognized as a pathogen with a propensity for CF. 5 cases in USA in non transplant patients. 4 were patients with CF (for one patient, repeated isolation from D1 to D11 from sputum, BAL or tracheal aspirates, and from lung biopsy at autopsy)
Hickey *et al.*, 2009
Yeasts and moulds in CF

Fungal biota in CF: a great diversity

<table>
<thead>
<tr>
<th>Chronicity</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenicity still unknown</td>
<td>Pathogenicity established</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A. flavus</th>
<th>A. nidulans</th>
<th>A. niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. apiospermum species complex</td>
<td>(S. apiospermum, P. boydii, S. aurantiacum, P. minutispora)</td>
<td></td>
</tr>
<tr>
<td>E. dermatitidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. prolificans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. terreus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. argillacea, R. aegroticola, R. piperina</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. phaeomuriformis</th>
<th>A. lentulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. jirovecii</td>
<td></td>
</tr>
<tr>
<td>Fomitopsis spp.</td>
<td>Cladosporium spp.</td>
</tr>
</tbody>
</table>

DNA detection: *Fusarium culmorum, Acremonium strictum, …*

But largely more complex as revealed by microbiome studies

Nagano et al., *Med Mycol*, 2010
Detecting fungi in CF
Non cultural methods

Detection of fungal metabolites from sputum samples
- 2-pentylfuran (*A. fumigatus*)
 Syhre *et al*., Med Mycol, 2008
- methylcoprogen B (*S. apiospermum*)
 Bertrand *et al*., Med Mycol, 2010

PCR-based methods targeting a unique species or a limited number of species
- *Exophiala dermatitidis*
 Nagano *et al*., J Cyst Fibros, 2008
- Species of the *S. apiospermum* complex
 Lu *et al*., Mycoses, 2011
- *Rasamsonia argillacea* species complex
 Steinman *et al*., 2014

Detection and direct identification of the different fungal species that may be encountered in CF

Development of a DNA chip
(Collaboration with T.C. Chang from Tainan, Taiwan)
Detecting fungi in CF
Non cultural methods

Amplification of the ITS regions of rDNA genes by nested-PCR, followed by hybridization on species-specific oligonucleotide probes (23) immobilized on glass slides

<table>
<thead>
<tr>
<th>Acfus2a+2b</th>
<th>Asfia4</th>
<th>Asfum2a</th>
<th>M</th>
<th>Asnid2</th>
<th>Asnig2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aster2</td>
<td>CAB5</td>
<td>CDU1a</td>
<td>M</td>
<td>CGL1</td>
<td>CLUS1</td>
</tr>
<tr>
<td>CP6</td>
<td>CP8</td>
<td>CP10</td>
<td>M</td>
<td>CT3c</td>
<td>Exder1</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
<td>NC</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Fopin1</td>
<td>Palil4</td>
<td>Pavar2</td>
<td>M</td>
<td>Psboy3</td>
<td>Scbre3</td>
</tr>
<tr>
<td>Scpro4</td>
<td>Taeme4</td>
<td>Taeme6</td>
<td>M</td>
<td>NC</td>
<td>PC</td>
</tr>
</tbody>
</table>

M : orientation of the chip (Dig-ITS4 primer)
NC: negative control
PC: positive control (rDNA 5.8S)

Bouchara et al., J Clin Microbiol, 2009
Detecting fungi in CF
Non cultural methods

Validation of the DNA chip (specificity of the probes) using DNA extracts from pure cultures of reference strains and clinical or environmental isolates of target (182 strains) and non target species (142 isolates, 135 species)

Bouchara et al., J Clin Microbiol, 2009
Detecting fungi in CF
Non cultural methods

Cultures: Sterile AF + CA AF + Spro + CA AF + CA Afla + AF + Ater + Cpara
DNA chip: Negative AF + CA AF + Spro + CA AF + CA + Cpara Afla + AF + Ater + Cpara + Cgla

Aspergillus flavus
Aspergillus fumigatus
Aspergillus nidulans
Aspergillus niger
Aspergillus terreus
Emericella nidulans var. echinulata
Candida albicans
Candida dubliniensis
Candida glabrata
Candida lusitaniae
Candida parapsilosis
Candida tropicalis

Acrophialophora fusicpora
Exophiala dermatitidis
Fomitopsis pinicola
Paecilomyces lilacinus
Paecilomyces variotii
Penicillium emersonii
S. apiospermum species complex
Scedosporium prolificans
Scopulariopsis brevicaulis

Bouchara et al., J Clin Microbiol, 2009
Detecting fungi in CF
Non cultural methods

Pyrosequencing

Next generation automated sequencing equipments based on PCR-electrospray ionization-time-of-flight/mass spectrometry (PCR-ESI-TOF/MS)

Multiplex PCR targeting the ITS 1 or 2 regions of rDNA genes, *TUB* or *CAL*

Separation of the amplified products after positive electrospray ionization

Final identification by mass spectrometry

PLEX-ID (Abbott-Ibis Biosciences), now stopped for IRIDICA (currently under development) : smaller and easier to use, and thus more conducive to a clinical laboratory setting
Detecting fungi in CF
Cultivation of sputum samples

Nagano et al., Med Mycol, 2010

Mycological cultures with antibiotics dramatically increased the number of fungi that could be detected

Masoud-Langraf et al., Med Mycol, 2013

..... we recommend homogenizing CF sputa with a mucolyticum, to prepare serial dilutions and to use appropriate fungal culture media with added antibiotics

What culture media should be used ?

Horre et al., Respiration, 2008

.... standard microbiological media and procedures are not sufficient to detect colonization of the respiratory tract by Pseudallescheria / Scedosporium in CF patients.
Detecting fungi in CF
Cultivation of sputum samples

Species of the *S. apiospermum* complex may not be detected because of its usual association with *A. fumigatus* (more rapidly and more extensively growing)

A prolonged incubation time (≥ 7 days) and the use of a semi-selective culture medium (YPDA supplemented with cycloheximide) greatly facilitate the detection of species of the *S. apiospermum* complex.
Detecting fungi in CF
Cultivation of sputum samples

Prevalence of the *S. apiospermum* species complex in CF:
8.6% in France - 4.5% and 6.5% in Austria - 5.3% in Germany - 11.6% in Australia

Cimon *et al.*, Eur J Clin Microbiol Infect Dis, 2000
Horre *et al.*, Respiration, 2009
Harun *et al.*, Med Mycol, 2010

Lack of standardization of the procedures used for mycological examination of respiratory secretions from CF patients

- inoculation of the samples on agar slants
- number and nature of the culture media used (absence of semi-selective culture media)
- too short incubation time

Borman *et al.*, Med Mycol, 2011
Detecting fungi in CF
Cultivation of sputum samples

French Society for Microbiology – French Society for Medical Mycology – patient organization

Guidelines for microbiological examination of sputum samples in CF

Prior homogenization of the samples with a mucolyticum

Plating in parallel on:

- chromogenic medium for cultivation of yeasts and easy detection of mixed populations
- yeast extract-peptone-dextrose-agar (YPDA) containing antibiotics (Cmp + gentamicin)
- YPDA with Cmp (0.5 g/L) and cycloheximide (0.5 g/L)
Detecting fungi in CF
Cultivation of sputum samples

Other semi-selective culture media can be more suitable

- B⁺ culture medium Nagano et al., J Cyst Fibros, 2008
- Sce-Sel⁺ culture medium Rainer et al., Antonie Van Leeuwenhoek, 2008
- Dichloran-rose Bengal agar + Cmp + Benomyl (DRBC-benomyl), developed for isolation of molds from food King et al., Appl Environ Microbiol, 1979

<table>
<thead>
<tr>
<th></th>
<th>2006 n = 251 (78)</th>
<th>2007 n = 253 (84)</th>
<th>2008 n = 178 (71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPDA</td>
<td>23 (7)</td>
<td>15 (7)</td>
<td>12 (3)</td>
</tr>
<tr>
<td>YPDA + cycloheximide</td>
<td>35 (8)</td>
<td>24 (7)</td>
<td>13 (4)</td>
</tr>
<tr>
<td>DRBC + Benomyl</td>
<td>41 (8)</td>
<td>35 (10)</td>
<td>20 (6)</td>
</tr>
</tbody>
</table>
Detecting fungi in CF
Cultivation of sputum samples

MFIP study (coordinated by L. Delhaès and J.P. Bouchara)

Objectives:
Compare culture media and different temperatures or durations of incubation to determine the best combination of culture media to be used for mycological examination of sputum samples from CF patients

Study design:
Multicenter international study conducted prospectively

19 labs: France 9
 Italy 4
 Spain 1
 UK 1
 Belgium 1
 Austria 1
 Greece 1
 Australia 1
Detecting fungi in CF
Cultivation of sputum samples

Pretreatment of the samples

Digestion of the sample (equal volume of mucolytic agent)
15 s homogenization
15 à 30 min à 37° C

Quantitative inoculation: 20 µl per plate

1. Chromogenic culture medium 37° C
2. YPDA + ATB 37° C
3. DRBC-benomyl 37° C
4. Sce-Sel+ medium 37° C
5. YPDA + Cmp (0.5 g/L) and cycloheximide* (0.5 g/L) 37° C
7. Erythritol Cmp agar 30° C
8. YPDA + ATB 37° C

1:10 dilution for early detection of fungal colonization
[A. Borman unpublished data]

Incubation of the plates during 15 days
Identification of fungi by conventional procedures

Results to be analyzed using the Chi-squared Automatic Interaction Detector method to determine the best combination of culture media to be used
Accurate identification at the species level required:

- better knowledge on the epidemiology of fungal colonization of the airways/respiratory infections in CF
- may provide information about the origin of the contamination of the patient
- to guide the antifungal therapy

Species identification within the S. *apiospermum* complex
Scedosporium apiospermum (initially considered the anamorph of *Pseudallescheria boydii*)

The five species *S. apiospermum* complex:
Differences in their frequency in the CF context and their distribution in the environment as well as in their virulence and their antifungal susceptibility pattern

Zouhair *et al.*, 2013; Rougeron *et al.*, 2014
Detecting fungi in CF
Identification methods

Species identification within the *Scedosporium apiospermum* complex cannot be achieved by phenotypic methods
- Morphological examination
- Physiological tests (resistance to cycloheximide, maximal growth temperature, …)
- Conventional biochemical studies (maltose assimilation)

Sequencing four loci in the fungal genome
- ITS 1 and 2 regions of rDNA genes
- Two loci in the β-tubulin gene (β-TUB and TUB2)
- One locus in the calmodulin gene (CAL)

MALDI-TOF/mass spectrometry may be helpful for differentiation of sibling species within species complexes
Detecting fungi in CF
Identification methods

MALDI-TOF/mass spectrometry (collaboration with M.E. Bougnoux and the Andromas team)
No prior extraction of proteins - No standardization of the age of the cultures
Reference spectra acquired from 3-, 5- and 7-day-old cultures of reference strains. Superspectra. Validation using a large number of clinical or environmental isolates

S. boydii
S. apiospermum
S. minutisporum
S. aurantiacum
S. dehoogii

Sitterlé et al., 2014
Detecting fungi in CF
Clinical significance – serological studies

Clinical and radiological signs and results from bacteriological examination of respiratory secretions

Detection of serum specific antibodies may help to determine the clinical significance of fungal detection

In the absence of serum specific IgE, detection of serum specific IgG allows the differentiation between non diseased colonized CF patients, and patients with bronchitis

But commercially available only for *A. fumigatus*
Detecting fungi in CF
Clinical significance – serological studies

Regarding *Scedosporium* species:

Antibody detection performed only in a few specialized laboratories by counter-immunoelectrophoresis using home-made crude antigenic extracts – not for epidemiological studies

Development of ELISA for epidemiological studies

But possible cross-reactions with *A. fumigatus* using crude extracts
• Many polysaccharides common to the different fungal species encountered in CF (mannans, β-glucans and chitin)
• Proteins shared by these fungi (e.g. enzymes involved in essential metabolic pathways like ergosterol synthesis, …)
Detecting fungi in CF
Clinical significance – serological studies

Characterization of catalases produced by *S. boydii* (Cat A1, Cat A2, Cat A2’)

Purification of Cat A1, a promising target for development of specific antibody detection assays

Development of an ELISA assay which was evaluated with sera from CF patients:

- No fungi recovered from sputum samples, no serum antibodies (group A)
- *A. fumigatus* exclusively and exclusive presence of serum anti-*A. fumigatus* antibodies by CIE (group B)
- *S. apiospermum* or *S. boydii* exclusively and exclusive presence of serum anti-*S. boydii* antibodies by CIE (group C)

High sensitivity and no cross reactions with *A. fumigatus*
Detecting fungi in CF
Clinical significance

In most cases, no specific antibodies
Moulds in the CF airways: not innocent bystanders
Usually living in the outdoor environment as saprophytes
Not commensals of the respiratory tract
Chronic colonization contributes to the inflammatory reaction progressively leading to a clinical or functional deterioration

Amin et al., Chest, 2010
Retrospective cohort study
230 CF patients followed-up in Toronto during 5 years
The chronic colonization of the airways by *A. fumigatus*: an independent risk factor for hospital admissions in patients with CF
Assessment of *Aspergillus* sensitization or persistent carriage as a factor in lung function impairment in cystic fibrosis patients
Fillaux et al., Scand J Infect Dis, 2012

251 patients followed-up in Toulouse from 1995 to 2007
Persistent carriage (persistence of *A. fumigatus*-positive cultures) is associated with lung function decline
Detecting fungi in CF
Clinical significance - genotype studies

Future studies dealing with the clinical relevance of fungi in CF should include the genotype analysis of multiple and sequential isolates of the fungus

- Multiple: collected from the same sputum sample
- Sequential: collected from successive sputum samples from the same patient

Repeated isolation of the same fungal species does not imply a chronic colonization

Genotyping needed to discriminate between

- Regular, but transient carriage of always distinct genotypes
- Chronic colonization of the airways (repeated isolation of the same genotype which reveals the development of the fungus within the respiratory tract)
Detecting fungi in CF
Clinical significance - genotype studies

Epidemiological study of the airway colonization by *A. terreus* (collaboration with J. Meis, Nijmegen, The Netherlands)

- 5 patients with CF followed-up for 2 months to 7.5 years
- 115 isolates (45 samples - from 1 to 5 isolates per sample) investigated by microsatellite analysis (9 di-, tri, or tetra-nucleotide markers)
- 17 genotypes identified

Rougeron *et al*., Clin Microbiol Infect, 2013
Weird moulds
Working together for faster progress

Despite significant improvements, progress are still needed in the biological diagnosis and treatment of these infections, as well as in our understanding of the pathogenic mechanisms or ecology of these fungi.

ECMM/ISHAM working group on
Fungal respiratory infections in Cystic Fibrosis (Fri-CF)
Convenors: J.P. Bouchara, A. Borman and F. Symoens

1st Meeting in Angers, on 2009, June 7-8th
2nd Meeting in Angers, on 2011, September, 1st-2nd
3rd Meeting in Angers, on 2014, June, 5th-6th

jean-philippe.bouchara@univ-angers.fr